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Exactly solvable hydrogen-like potentials and the
factorization method

J Oscar Rosas-Ortiz†‡
Departamento de Fı́sica Téorica§, Universidad de Valladolid, 47011 Valladolid, Spain

Received 24 July 1998

Abstract. A set of factorization energies is introduced, giving rise to a generalization of the
Schr̈odinger (or Infeld and Hull) factorization for the radial hydrogen-like Hamiltonian. An
algebraic intertwining technique involving such factorization energies leads us to deriven-
parametric families of potentials which, in general, are almost-isospectral to the hydrogen-like
radial Hamiltonians. The construction of SUSY partner Hamiltonians with ground state energies
greater than the corresponding ground state energy of the initial Hamiltonian is also explicitly
performed.

1. Introduction

The factorization method has been historically attributed to Schrödinger [1]. This approach
(originating from the well known treatment of the harmonic oscillator in non-relativistic
quantum mechanics) avoids the use of cumbersome mathematical tools. Since Schrödinger
the factorization method has been successfully applied to solve essentially any problem
for which there exists an exact solution [2]. Considering the narrow set of exactly
solvable potentials, it is interesting to look for new potentials for which the corresponding
Schr̈odinger equation becomes analytically solvable. There are many results on the matter,
in particular it is worthwhile mentioning a work of Mielnik [3], where a variant of the
standard factorization was introduced in order to get a family of Hamiltonians isospectral
to the harmonic oscillator. The first application of Mielnik’s factorization was performed
for the hydrogen-like radial potentials [4], the resulting family of Hamiltonians became
isospectral to the standard radial hydrogen-like Hamiltonians. An additional interesting
application arose from the arena of coherent states. Concerning this subject, it is well known
that the usual first-order factorization operators for the harmonic oscillator Hamiltonian are
also its creation and anihilation operators. This is not the case for the isospectral oscillator
Hamiltonians derived by Mielnik because their first-order factorization operators are different
from their creation and anihilation operators, which turn out to be of order equal to (or
greater than) three [3, 5]. These last operators are the generators of nonlinear algebras,
and allow one to immediately get the corresponding coherent states as the eigenstates of
the annihilation operator [5]. Recently, these algebras have been rederived (using different
methods) and reinterpreted by other authors [6, 7]. It has also been shown that such nonlinear
algebras can be associated to other systems [7].
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The factorization techniques [1–3], the Darboux transformation [8], the supersymmetric
quantum mechanics (SUSY QM) [9], and other procedures have a common point: they can
all be embraced in the algebraic scheme known as thefirst-order intertwining transformation
which makes use of a first-order differential operator tointertwine (the eigenfunctions of)
two different Hamiltonians [10]. The generalization of this technique involves higher-order
differential operators and leads in a natural way to the higher order SUSY QM [11–15].
One of the advantages of the intertwining technique is that the composition ofn first-order
intertwining transformations allows one to express thenth-order intertwiner operators as the
product ofn first-order intertwining operators [11, 13, 15].

The experimental study of spectra (for systems as nuclei, atoms, molecules, etc) makes
important per se the theoretical determination of the energy levels of potentials capable
of being used as models for describing different physical situations. However, for a
quantum system with a given Hamiltonian it is seldom possible to get exact solutions
to the corresponding eigenproblem.

In this paper we are going to show that, given an exactly solvable potential as an input,
the intertwining techniqueprovides, in general, new exactly solvable potentials which, from
the traditional viewpoint, would be solved by perturbative or approximate methods. Hence,
working with Hamiltonians whose spectrum is known, one has at hand the tools to test the
validity and convergence of some perturbative or approximate methods [13]†. In section 2
we shall present thenth-order intertwining technique, discussing in more detail those aspects
which have not been previously reported in the literature. In particular, in section 2.1 we
shall show that the standard Infeld–Hull factorization as well as the modified Mielnik’s
method can be recovered by the first-order intertwining treatment. We will introduce a
generalization of the Mielnik’s approach by using solutions to the Schrödinger equation
corresponding to factorization energies not belonging to the physical spectrum of the initial
problem. In section 2.2, by using the second-order intertwining approach, we will introduce
explicit expressions allowing the construction oftwo-parametric families of potentials whose
spectrum is equal to the initial spectrum plus two new levels at predetermined positions.
In section 2.3 we shall prove that the second-order, as well as the higher-order cases,
can be recovered by the iterative application of our first-order intertwining procedures.
Section 3 contains the derivation of a wide set of newn-parametric families of potentials
whose spectrum is the same (isospectral), or almost the same (almost isospectral), as the
corresponding hydrogen-like spectrum. We shall introduce a set of factorization energies
generalizing the choice made for the Infeld–Hull and Mielnik factorizations of the hydrogen-
like potentials. As a consequence, the firstn energy levels of then-parametric families can
be placed at any previously fixed spectral positions chosen from the above mentioned set of
factorization energies. This result opens the possibility of placingholesbetween these levels
or between them and the other ones. Some particular cases related to results previously
derived by other authors are also mentioned.

2. The intertwining method

Let H andH̃ be the one-dimensional Hamiltonians

H ≡ − d2

dx2
+ V (x) H̃ ≡ − d2

dx2
+ Ṽ (x). (1)

Thenth-orderintertwining methodaims to find anth-order differential operatorA such that

H̃A = AH. (2)

† See for example the discussion given by Mielnik in [3] and by Fernández in [4].
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Let H be a Hamiltonian with known solutions to the time-independent Schrödinger
equationHψ = Eψ . We are looking for solutions to the corresponding equation for the
intertwined HamiltonianH̃ , H̃ ψ̃ = Ẽψ̃ . The transformation (2) preserves many spectral
properties of the initial Hamiltonian, e.g.̃H(Aψ) = E(Aψ), ∀Aψ 6= 0. We are interested
only in those operatorsA whose action onL2(R) produces functions inL2(R); hence
we can choosẽψ ≡ c0Aψ , with c0 a normalization constant, and we will havẽE = E,
∀ψ̃ = c0Aψ 6= 0, ψ ∈ L2(R). Therefore, the intertwining operatorA transforms solutions
ψ of the initial Schr̈odinger equation into solutions̃ψ of a new Schr̈odinger equation, both
equations sharing the initial eigenvalues. However, the new Hamiltonian could have a finite
number of additional eigenvalues; if this is the case, the corresponding eigenfunctions have
to be elements of the kernel ofA†, as we shall see below. We will show how the intertwining
method works for the simplest case whereA is a first-order differential operator. This case
is especially interesting because it provides a general framework in which various apparently
different methods are included.

2.1. The first-order intertwining method

Let the operator involved in the intertwining relationship be the following first-order
differential operator

A ≡ a = d

dx
+ β(x). (3)

By introducing (1) and (3) in (2) we get

−β ′(x)+ β2(x) = V (x)− ε (4)

Ṽ (x) = V (x)+ 2β ′(x) (5)

whereε is an arbitrary integration constant, and the prime denotes derivative with respect
to x. Notice the implicit dependence ofβ(x) and Ṽ (x) on ε.

From equations (1) and (5) it becomes apparent thatH̃ −H = 2β ′(x), from (3) we get
[a, a†] = 2β ′(x), therefore (4) and (5) lead to

H = a†a + ε H̃ = aa† + ε. (6)

Equation (6) shows that the first-order intertwining relationship (2), withA given by (3),
leads in a natural way to the factorization of the intertwined Hamiltonians for each value of
ε ∈ R, provided thatβ(x) satisfies (4) with a givenV (x). The traditional approach to the
factorization method involves only a particular solution to the Riccati differential equation
(4) for a specific value ofε [2]. However, it is well known that a particular solution
to a Riccati equation allows one to get the corresponding general solution by means of
two quadratures [17]. Mielnik’s approach takes this into account [13] and gives a term in
β(x) unnoticed by the traditional factorization method. With the exception of the harmonic
oscillator and the hydrogen-like potentials, the general solutions to the corresponding Riccati
equation (4) remain unexplored for almost all the Infeld and Hull cases† ‡. An interesting
discussion on the relationship between Mielnik’s method and the Darboux transformation
was given by Andrianov and Borisov [11] (see also [19]). On the other hand, equations (4)
and (5) are basic in the construction of the SUSY partner HamiltoniansH+ ≡ H−ε = a†a,
andH− ≡ H̃ − ε = aa† in SUSY QM. In this language, it is said that equation (5) relates
the two SUSY partner potentials̃V (x) andV (x), and the functionβ(x) is named the SUSY

† An interesting application of Mielnik’s approach to the isotropic oscillator can be found in section 6 of [18].
‡ Some solutions to the Riccati equation for a particular case of the Hypergeometric type classification, as given
by Infeld–Hull in [2], as well as for the Dutra potential, can be found in equations (47) and (57) of [19].
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potential [9]. Notice that the two HamiltoniansH± are positive semidefinite, i.e.〈H±〉 > 0;
hence we haveE > ε and Ẽ > ε.

If the eigenfunctions{ψ} and eigenvalues{E} of H are known, the corresponding
eigenfunctions ofH̃ are given byψ̃ = (E − ε)−1/2 aψ with eigenvaluesẼ = E. They
form an orthonormal set

〈ψ̃ ′, ψ̃〉 = [(E′ − ε)(E − ε)]−1/2〈aψ ′, aψ〉 =
√
E′ − ε
E − ε 〈ψ

′, ψ〉 = 0 ∀ψ ′ 6= ψ.

However, they do not span yet the whole ofL2(R) because the solution toa†ψ̃ε = 0 is
orthogonal to all the members of the set{ψ̃}, 〈ψ̃ε, ψ̃〉 = (E − ε)−1/2〈a†ψ̃ε, ψ〉 = 0. That
first-order linear differential equation is immediately solved:

ψ̃ε ∝ e
∫
β(x) dx. (7)

From (6), it is easy to see that̃Hψ̃ε = εψ̃ε . Hence,ψ̃ε is an eigenfunction ofH̃ with
eigenvalueε. In the case wheñψε is a square integrable function (i.e.ψ̃ε has physical
sense as a wavefunction), it has to be added to the set{ψ̃ = (E − ε)−1/2aψ} in order to
complete a new basis onL2(R). The set of eigenvalues of̃H is given by{Ẽ} = {ε, E}, so
that the HamiltonianH̃ has the same spectrum asH plus a new level atε. Indeed, since
the general solutionβ(x) of the Riccati equation (4) has a ‘free parameter’ λ, labelling also
Ṽ (x) (see equation (5)), the Mielnik’s method allows one to construct, for a specific value
of ε, a one-parametric family of potentials̃V (x) which in general will be almost isospectral
to V (x).

We are now going to disscus how the Mielnik’s method can be further generalized.
First, let us remark that the factorization energy considered by Infeld–Hull and Mielnik
is not the only posibility leading to a solvable Riccati equation (4). The key point arises
when the nonlinear first-order differential equation (4) is replaced into a homogeneous linear
second-order differential equation by means of the transformation†:

β(x) = − d

dx
ln u(x) (8)

which leads to the second-order differential equation:

d2

dx2
u(x)− [V (x)− ε]u(x) = 0. (9)

If the factorization energyε belongs to{E}, then the solutionsu(x) to (9) are the same
as the previously known eigenfunctionsψ(x) of the initial HamiltonianH . Following [3],
we shall consider only the cases where the factorization energyε does not belong to the
spectrum ofH . Therefore, the solutions to (9) do not have direct physical meaning, but we
have just seen that they naturally lead to the factorization of the HamiltoniansH andH̃ in
the spirit of Mielnik’s approach, providing the explicit form for the new potentialsṼ (x) as
well.

Let us remark thatn different factorization energiesε1, ε2, . . . , εn, lead ton different
Riccati equations (4) and ton one-parametric families of potentials̃Vi(x), i = 1, 2, . . . , n,
almost isospectral toV (x). It must be clear that there will ben different factorizations of
the initial HamiltonianH (see equation (6)). With the aim of later iterating the first-order
intertwining technique let us introduce a slightly different notation. Let us writeε = ε(k),
wherek labels the specific real numberε 6∈ {E}, which we will use as factorization energy.
Moreover, we shall write explicitly the dependence ofβ(x) andṼ (x) on ε(k) (see equations
(4) and (5)) by makingβ(x) = β(k)(x) and Ṽ (x) = V (k)(x). For the sake of simplicity the

† The inverse transformation of (8) isu(x) = exp(− ∫ β(x) dx).
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other functions and operators labelled by atilde will be represented as̃H = H(k), Ẽ = E(k),
etc. Finally, the number of indices will denote the order of the intertwining transformation
(2), as well as the number of ‘free parameters’ λ which will label the intertwined potential.
For example,H(k) represents a first-order intertwined Hamiltonian whose corresponding
one-parametric family of potentialsV (k)(x) is almost isospectral toV (x), while H(km)

represents a second-order intertwined Hamiltonian with the correspondingtwo-parametric
family of potentialsV (km)(x) almost isospectral toV (x). The benefits of such notation will
be clear in the next sections.

2.2. Second-order intertwining method

Let us consider the second-order differential operator

B(km) = d2

dx2
+ η(x) d

dx
+ γ (x) (10)

whereη(x) andγ (x) depend implicitly onε(k) andε(m). IntroducingH(km) = −d2/dx2 +
V (km)(x) and (10) in the second-order intertwining relationshipH(km)B(km) = B(km)H , with
H given in (1), and by ordering at different powers of the operator d/dx, we have for the
corresponding coefficients

V (km)(x) = V (x)+ 2η′(x) (11)

2γ (x) = η2(x)− η′(x)− d − 2V (x) (12)

V ′′(x)+ η(x)V ′(x) = 2γ (x)η′(x)− γ ′′(x) (13)

whered is an integration constant. Following [12], we can express the functionsV (x),
V (km)(x) and γ (x) in terms ofη(x). The substitution of (12) into (13) produces a third-
order differential equation which, after multiplying byη(x), becomes reduced (by a first
integration) to the second-order differential equation

ηη′′ − (η
′)2

2
+
(

2γ − η′ − η
2

2

)
η2+ 2c = 0 (14)

where we have used once again the equation (12) andc is a new integration constant.
In order to solve the nonlinear second-order differential equation (14), let us try the

ansatz†
η′(x) = η2(x)+ z(x)η(x)+ b (15)

where the constantb and the functionz(x) are to be determined. Introducing (15) in (14)
we getb± = ±2

√
c, c > 0, besides two Riccati differential equations

z′±(x)+
z2
±(x)
2
− 2V (x)− d − b± = 0. (16)

The identificationz+(x) = −2βk(x), z−(x) = −2βm(x), and

d = −ε(m) − ε(k) c =
(
ε(m) − ε(k)

2

)2

ε(m) 6= ε(k) (17)

allows one to write the solutions of (14) in the form

η(x) = −
(

ε(m) − ε(k)
β(m)(x)− β(k)(x)

)
ε(m) 6= ε(k) (18)

† The author aknowledges Dr Luis M Nieto suggesting this ansatz.
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whereβ(m)(x) and β(k)(x) are both solutions to (4) with factorization energiesε(m) and
ε(k) respectively. Equations (18) and (12) determine the second-order intertwining operator
B(km). Notice that, by means of this process, we can derive solutions to the nonlinear second-
order differential equation (14) by just solving the easier nonlinear first-order differential
equation (4) fortwo differentvalues of the factorization energyε.

The action ofB(km) on the eigenfunctions{ψ} of H gives the basic set of eigenfunctions
{9(km) ∝ B(km)ψ} of the intertwined HamiltonianH(km). On the other hand, the solutions
to the second-order differential equationB(km)

†
9
(km)
B = 0 are orthogonal to all the

9(km) ∝ B(km)ψ . Now, because the kernel ofB(km)
†

is a two-dimensional subspace, the
maximum number of linearly independent elements is two. Therefore, we are looking for
two square integrable linearly independent solutions toB(km)

†
9
(km)
B = 0 such that they are

simultaneously eigenfunctions ofH(km), with eigenvalues to be determined.
Let us now write9(km)

B = C0 exp(
∫
f (km)(x) dx) as a generic kernel element ofB(km)

†
;

then the equationB(km)
†
9
(km)
B = 0 can be rewritten as

d

dx
f (km)(x)− η(x)f (km)(x)+ (f (km)(x))2− η′(x)+ γ (x) = 0. (19)

Using equations (4), (12) and (15), the general solutions to (19) can be obtained:

9
(km)
B (x) = Ck u

(k)(x)

W(k,m)
+ Cm u

(m)(x)

W(k,m)
(20)

whereu(k)(x) andu(m)(x) are the twounphysicalsolutions to (9) with eigenvaluesε(k) and
ε(m), respectively. The functionW(k,m) = u(k)(u(m))′ − (u(k))′u(m) is the Wronskian of
u(k)(x) andu(m)(x).

By using (8) and (9) we now rewrite (18) as

η(x) = (ε(m) − ε(k))u
(k)(x)u(m)(x)

W(k,m)
= − d

dx
lnW(k,m). (21)

Notice that the right-hand side of (21) corresponds to Crum’s determinant [16]. Hence,
the coefficient of the second term ofB(km) in (10) can be constructed either by using (21) or
simply by (18). Using now (16), (8) and (9), withη(x) as given above, it is easy to show
that the functionu(k)/W(k,m) is eigenfunction ofH(km) with eigenvalueε(m). A similar
procedure shows thatu(m)/W(k,m) is also an eigenfunction ofH(km) with eigenvalueε(k).
Taking this into account we write

9(km)
εm

(x) ∝ u(k)(x)

W(k,m)
9(km)
εk

(x) ∝ u(m)(x)

W(k,m)
(22)

where the subindexεm (εk) indicates the corresponding eigenvalueε(m) (ε(k)). Therefore,
the eigenfunctions ofH(km) are {9(km)

εm
,9(km)

εk
} ∪ {9(km) ∝ B(km)ψ |B(km)ψ 6= 0}, and the

corresponding eigenvalues are{E(km)} = {ε(m), ε(k), E}. Thus,H(km) has the same spectrum
asH plus two new levels atε(m) andε(k), provided that9(km)

εm
and9(km)

εk
are square integrable

functions. As (18) involves two general solutions to the Riccati equation (4), thusV (km)(x)

represents a set oftwo-parametric families of potentials almost isospectral toV (x).
Notice that we have not placed any ordering to the levelsε(m) and ε(k) so that it is

possible either thatε(m) > ε(k) or thatε(m) < ε(k). This is implicit in the fact thatη(x) in (18)
is invariant under the changek ↔ m. This will be important in the next section, where we
are going to show that the results found by means of the second-order intertwining technique
can be found also by the iteration of two successive first-order intertwining transformations.
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2.3. Iterative factorization

Let us come back to the results of section 2.1 and suppose that by means of the first-
order intertwining technique we have obtained a HamiltonianH(k) from H using a certain
factorization energyε(k). We now look for a new Hamiltonianh(km) = −d2/dx2+ v(km)(x)
attainable fromH(k) by means of the first-order intertwining method, i.e.,h(km) andH(k)

satisfy the following relationship

h(km)a(km) = a(km)H (k)

wherea(km) is the first-order differential operatora(km) ≡ d/dx + β(km)(x). As usual, we
arrive at the standard equations linkingv(km)(x), V (k)(x) andβ(km)(x):

−(β(km))′ + (β(km))2 = V (k)(x)− εm = 2(β(k))′ + V (x)− εm (23)

v(km)(x) = V (k)(x)+ 2(β(km))′(x) = V (x)+ 2[β(km)(x)+ β(k)(x)]′ (24)

whereεm is a new integration constant (factorization energy) and we have used equation
(5). The intertwined Hamiltonians once again become factorized

H(k) = a(km)†a(km) + εm h(km) = a(km)a(km)† + εm.
The eigenvalues ofh(km) are given by {E (km)} = {εm,E(k)}, and the eigenfunctions
by ψ(km)

εm
∪ {ψ(km) = (E(k) − εm)−1/2a(km)ψ(k)|a(km)ψ(k) 6= 0}, where the missing state

ψ(km)
εm
∝ exp(

∫
β(km)(x) dx) corresponds to the eigenvalueεm.

The key point here becomes to find the general solution to the new Riccati’s differential
equation (23) for someεm ∈ R. The obvious solution(β(km))′(x) = −(β(k))′(x), for
which εm = ε(k), corresponds to a Hamiltonianh(km) equal toH becausev(km)(x) = V (x).
Avoiding this trivial solution we shall considerεm 6= ε(k). Non-trivial solutions to (23) can
be found by inspecting the following intertwining relationship:

h(km)a(km)a(k) = a(km)H (k)a(k) = a(km)a(k)H. (25)

Equation (25) shows thath(km) andH are related by the product of two first-order
intertwining operators, i.e., by the second-order differential operatorC(km) ≡ a(km)a(k). An
interesting question immediately arises: is the Hamiltonianh(km) the same as theH(km) of
section 2.2? IfC(km) = B(km) the answer is affirmative, and in this case the SUSY potential
β(k)(x), the iterated new SUSY potentialβ(km)(x), and the functionsγ (x) and η(x) are
related by the equations

η(x) = β(km)(x)+ β(k)(x) γ (x) = d

dx
β(k)(x)+ β(km)(x)β(k)(x). (26)

Comparing (18) and (26) we get the solutions of (23) (withεm = ε(m)):

β(km)(x) = −β(k)(x)−
(

ε(m) − ε(k)
β(m)(x)− β(k)(x)

)
(27)

whereβ(k)(x) (β(m)(x)) is a solution of (4) associated to the factorization energyε(k) (ε(m)).
Equation (27) is nothing but the theorem of Fernándezet al [15]. The eigenfunctions of
h(km) = H(km) are given by the basic set

9(km)
εk
= (ε(k) − ε(m))−1/2a(km)ψ(k)

εk
9(km) = (E − ε(m))−1/2(E − ε(k))−1/2a(km)a(k)ψ

plus the new missing state

9(km)
εm
∝ e

∫
β(km)(x) dx
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which, by definition, is such thata(km)†9(km)
εm
= 0. Hence, by constructionB(km)†9(km)

εm
=

a(k)†a(km)†9(km)
εm
= 0. On the other hand, remembering thata(k)†ψ(k)

εk
= 0, we get

B(km)†9(km)
εk
= (ε(k) − ε(m))−1/2a(k)†[H(k) − ε(m)]ψ(k)

εk
= 0.

Now, by using (26), (8) and after (21), we can write

9(km)
εk

(x) = (ε(k) − ε(m))1/2 u
(m)(x)

W(k,m)

which corresponds to the definition of9(km)
εk

(x) given in (22). A similar procedure but
now using (27), (8) and (21), allows one to recover the corresponding expression for
9(km)
εm

(x). Finally, the set of eigenvalues ofh(km) = H(km) is given by{E (km) = E(km)} =
{ε(m), ε(k), E}, just as we have shown in section 2.2.

It is worth noticing that the operatorB(km) = a(km)a(k) does not factorize the intertwined
HamiltoniansH andH(km), but some of their quadratic forms:

B(km)†B(km) = a(k)†a(km)†a(km)a(k) = a(k)†[H(k) − ε(m)]a(k) = a(k)†a(k)[H − ε(m)]
= (H − ε(k))(H − ε(m)) = (H − ε(m))(H − ε(k)) (28)

and

B(km)B(km)† = (H (km) − ε(m))(H (km) − ε(k)). (29)

Up to now, from the general solution to (4) for each factorization energyε(k), we have
derived aone-parametric family of potentialsV (k)(x) isospectral toV (x) but by a new level
at ε(k). From two of these solutions withε(k) 6= ε(m) we have also derivedtwo-parametric
families isospectral toV (x) but by two new levels atε(m) andε(k). It is possible to iterate
further the first-order method by considering now the general solutions to (4), associated to
three different factorization energiesε(k), ε(m), ε(l). The key Riccati equation to be solved
becomes now:

−(β(kml))′(x)+ (β(kml))2(x) = V (km)(x)− ε(l).
The algorithm (27) allows one to writeβ(kml)(x) in terms of two different solutions of (23),

β(kml)(x) = −β(km) −
(

ε(l) − ε(m)
β(kl)(x)− β(km)(x)

)
which leads to the following three-parametric family of potentialsV (kml)(x):

V (kml)(x) = V (km)(x)+ 2(β(kml))′(x) = V (x)+ 2[β(kml)(x)+ β(km)(x)+ β(k)(x)]′ (30)

having the same spectrum asV (x) but by three new energy levels atε(l), ε(m) andε(k) [15].
The corresponding third order intertwining operator is given byC(kml) = a(kml)a(km)a(k).
This leads to the factorization of some sixth-order differential operators, related to the two
intertwinned Hamiltonians by means of:

C(kml)
†
C(kml) = (H − ε(l))(H − ε(m))(H − ε(k))

C(kml)C(kml)
† = (H (kml) − ε(l))(H (kml) − ε(m))(H (kml) − ε(k)).

This process can be continued at will, and the corresponding formulae for the key functions
can be algebraically obtained from the solutionsβ(k)(x) to (4). It is interesting to see now
how the process does work explicitly for a physically meaningful system.
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3. The hydrogen-like potentials

Let us consider a single electron in the field produced by a nucleus with chargeZe, where
Z is the number of protons in the nucleus†. The time-independent Schrödinger equation is
given by:

−∇29(Er)− 2

r
9(Er) = E9(Er) (31)

where we are using the units ofrB = h̄2/Ze2m, and E = Z/2rB for the coordinate
and energy respectively. Due to the spherical symmetry, the standard choice9(Er) =
R(r)Y (θ, φ) separates (31) into a radial and an angular equation. The angular solutions are
given by the spherical harmonicsYml (θ, φ) and the energy spectrum can be finally obtained
by solving the radial equation:[

− d2

dr2
+ l(l + 1)

r2
− 2

r

]
ψ(r) = Eψ(r) (32)

where,l = 0, 1, 2, . . . , is the azimutal quantum number and, for the sake of simplicity, we
will work with ψ(r) ≡ rR(r), 06 r < +∞. The set of solutions of (32) span the whole
of L2(R+), with an inner product defined by〈ψ,ψ ′〉 = 4π

∫ +∞
0 ψ(r)ψ ′(r) dr < ∞. The

differential operator of the left-hand side of (32) will be referred as the radial Hamiltonian,
and it will be denoted byHl , where

Hl = − d2

dr2
+ Vl(x) Vl(x) ≡ l(l + 1)

r2
− 2

r
. (33)

The eigenvalues, for a fixedl, are given by the well known formula

En ≡ ElK = − 1

(l +K)2 K = 1, 2, 3, . . . . (34)

3.1. The new one-parametric families

Let us consider the first-order intertwining relationshipH(k)

l−1a
(k)
l = a(k)l Hl where, as a result

of further calculations, we are labelling from the beginning the unknown HamiltonianH
(k)

l−1
with the subindexl−1 because it will produce a centrifugal term for the new potential with
exactly that index. In order to solve the corresponding Riccati equation (4) we shall use its
equivalent second-order differential equation (9) rewritten as[

− d2

dr2
+ l(l + 1)

r2
− 2

r

]
u
(k)
l (r) = ε(k)l u(k)l (r). (35)

Comparing (35) with (32) and (34), it is natural to propose the factorization energies as:

ε
(k)
l ≡ −

1

(l + k)2 k 6= K l > 0 (36)

where, in general,k could be either a discrete as well as a continuous real number. On the
other hand, note that the casek = K reproduces the well known solutions to thephysical
eigenproblem (32)–(34); hence, following Mielnik we have takenk 6= K. It is clear that,
for a fixed value ofl, we haveε(k)l 6= ElK , ∀k 6= K.

In order to solve (35) we make the transformation

u
(k)
l (r) = r−ler/(l+k)8(k)

l (r) (37)

† Z = 1 describes the hydrogen atom, while ions or atoms with only one electron in the outermost shell can be
considered as hydrogen-like systems withZ > 1.
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leading to a confluent hypergeometric equation for8
(k)
l (r), whose general solution for the

discrete valuesk = 0,−1,−2, . . . ,−(l−1) is given by the linear combination of confluent
hypergeometric functions† [20]:

8
(k)
l (r) = 1F1[k,−2l,−2r/(l + k)] − νlk[2r/(l + k)]1+2l

1F1[1+ k + 2l, 2+ 2l,−2r/(l + k)]
(38)

with

νlk ≡ 0(1+ |k|)
0(2l + 2)

λ
(k)
l

(−2l)|k|
l > 0 (39)

whereλ(k)l is a constant to be determined and

(−2l)|k| ≡ 0(−2l + |k|)
0(−2l)

= (−2l + |k| − 1)(−2l + |k| − 2) . . . (−2l).

Note that8(k)
l (r = 0) = 1, while its asymptotic behaviour is given by

8
(k)
l (r) ∼

(
2r

l − |k|
)|k| 1− λ(k)l

(−2l)|k|
.

Hence, the solutions (37) are divergent at the origin as well as in the limitr → +∞, and
it is clear thatu(k)l (r) 6∈ L2(R+). This is the reason why we consider them asunphysical
solutions to the Schrödinger equation (32) with theatypical eigenvalues (36). Let us remark
that the discreteness ofk in (37)–(39) leads to the most transparent case available with the
mathematical tools at hand. The general solution to the corresponding Riccati equation (4)
arises after introducing (37) in (8), which gives

β
(k)
l (r) =

l

r
− 1

(l + k) −
d

dr
ln8(k)

l (r) l > 0. (40)

Using (5) and (40), we get the first-order intertwined potentials

V
(k)

l−1(r) = Vl−1(r)− 2
d2

dr2
ln8(k)

l (r) l > 0. (41)

The second term of (41) is free of singularities if

λ
(k)
l ∈

{
(−∞, 1) for |k| even

(1,∞) for |k| odd.
(42)

Hence, the new potentialsV (k)l−1(r) have the same singularity atr = 0 as Vl−1(r),

provided thatλ(k)l takes only values in the domain (42). Since the second term ofV
(k)

l−1(r)

tends to zero whenr → 0 andr → +∞, we conclude thatV (k)

l−1(r) behaves asVl−1(r) at
the ends of [0,+∞).

Now, the eigenfunctions ofH(k)

l−1 are obtained from the action ofa(k)l on the

eigenfunctions{ψnl(r)} of Hl , ψ
(k)

n,l−1 = (En − ε(k)l )−1/2 a
(k)
l ψnl(r), plus theisolatedground

state:

ψ
(k)

l−1,εk
= Clk r

le−r/(l+k)

8
(k)
l (r)

(43)

† The case whenk is different from a negative integer or zero will be discussed elsewhere.
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where8(k)
l (r) is given by (38), and

Clk =
[(

2

l − |k|
)2l+1

(
1− λ(k)l
(−2l)|k|

)
|k|!
(2l)!

]1/2

k = 0,−1,−2, . . . ,−(l − 1). (44)

It is important to notice that, despite the resemblance between the missing states (43) and
theunphysicalfunctions (37),ψ(k)

l−1,εk
∼ 1/u(k)l , only the first ones become square integrable

functions. The eigenvalues ofH(k)

l−1 (for fixed l andk) are

E
(k)

l−1,K = −
1

(l + k)2 ,−
1

(l +K)2 K = 1, 2, . . . . (45)

By comparing with (34) it is apparent that our families of potentials (41) have, in general,
the same spectrum as the corresponding spectrum of the hydrogen-like potentialsVl−1(r),
plus a new level atε(k)l .

3.2. Particular one-parametric families

Notice that, for fixedl, k can takel different valuesk = 0,−1,−2, . . . ,−(l − 1). Hence,
there arel different factorization energiesε(k)l generatingl non-equivalent families of
solvable potentialsV (k)l−1(r). In particular, let us notice thatε(0)l = −1/l2 ≡ L(l), with

λ
(k)
l = 0, lead to the standard factorization of the hydrogen-like potentials as presented by

Infeld–Hull (see equation 8.1.3, and p 68 of [2]). Thus, our technique can be considered
as a generalization of the Infeld–Hull factorization where, instead of looking for particular
solutions to (4) withε(0)l = L(l), we look for the general solutions withε(k)l = L(l+ k). In
a similar way, our results can be seen as a generalization of those derived by Fernández,
who found a general solution to (4) but only in the case withk = 0 [4]. Hence, for a fixed
l and takingk = 0, equation (45) leads toE(0)l−1,K = El−1,K , i.e., V (0)l−1,(r) is a family of
potentials strictly isospectral toVl−1(r). On the other hand, fork 6= 0, we have not only
ε
(k)

l−1 6= El−1,K , but ε(k)l−1 < El−1,K=1 = −1/(l + 1)2. In this case the spectrum ofH(k 6=0)
l−1 is

almost the same as the one ofHl−1, the difference resting in the ground state energy level.
It is clear now that the functions (41) represent a set ofl − 1 families of potentials almost
isospectral toVl−1(r), plus a family strictly isospectral toVl−1(r).

3.2.1. The casek = 0.
The member of the family (41), fork = 0, is given by

V
(0)
l−1(r) = Vl−1(r)− 2

d2

dr2
ln8(0)

l (r) l > 0 (46)

where

8
(0)
l (r) = 1−

(
2

l

)2l+1
λ
(0)
l

(2l)!

∫ r

0
x2le−2x/ldx. (47)

From (42) we see thatV (0)l−1(r) does not have more singularities thanVl−1(r) if λ(0)l ∈
(−∞, 1). In particular, forλ(0)l = 0, we have8(0)

l (r) = 1 andV (0)l−1(r) = Vl−1(r), which
means thatVl−1(r) itself is a member of the family (46). On the other hand, we get also the
standard SUSY potentialW(r) ≡ β(0)l (r) = l/r −1/l, besides the corresponding first-order
operatora(0)l = d/dr+ l/r−1/l, both of them used to solve the hydrogen-like Hamiltonians
[1, 2, 9]. Let us remark once again thatV (0)l−1(r) with λ(0)l = (2l)!(l/2)2l+1γ−1

l leads to the
one-parametric family of isospectral hydrogen-like potentials derived by Fernández [4]. If
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l = 1 andλ(0)1 → 1, the potential (46) tends also to the one found by Abraham and Moses
[21].

3.2.2. The casek = −1.
Let us take nowk = −1. Thus, the potential (41) becomes

V
(−1)
l−1 (r) = Vl−1(r)− 2

d2

dr2
ln8(−1)

l (r) l > 1 (48)

where

8
(−1)
l (r) =

[
1− r

l(l − 1)

]{
1+ λ

(−1)
l

(2l − 1)!

(
2

l − 1

)2l−1 ∫ r

0

x2le−2x/(l−1)

[l(l − 1)− x]2
dx

}
. (49)

In this caseλ(−1)
l ∈ (1,∞), and althoughVl−1(r) governs the behaviour at the origin and at

infinity of V (−1)
l−1 (r), it is not a member of the family (48). The corresponding eigenvalues

are given by

E
(−1)
l−1,K = −

1

(l − 1)2
,− 1

(l + 1)2
,− 1

(l + 2)2
, . . . l > 1. (50)

Notice the ‘jump’ between the first two energy levels ofH(−1)
l−1 ; this produces ahole in the

spectrum (50) because the level at−1/l2 is absent. Comparing (50) with (34) it turns out
thatV (−1)

l−1 (r) represents a family of potentials almost isospectral toVl−1(r). As a particular

example let us considerl = 2: in this caseV (−1)
1 (r) has the same levels,−1/n2, asV1(r)

for n > 3. However, the ground state energy level ofV
(−1)

1 (r) is at−1, which is forbidden
for V1(r) whose ground state is at− 1

4. The potentials (48) have been recently reported by
the author (see equations (10) and (22) of [14]) and they are plotted in figure 1 forl = 2
and different values ofλ(−1)

2 .

3.2.3. The case|k| > 1.
For |k| > 1, there is a gap between the two first energy levels ofH

(k)

l−1, which grows
up as|k| increases. For instance, when|k| = 2, andl = 3, the levels labelled byn = 2
andn = 3 are not present in the spectrum ofH(−2)

2 . A similar result, but with a different
method and Hamiltonian, has been derived by Samsonov [11].

Recently, the SUSY potentialω(x) = a/γ − γ /x, with a > 0 andγ > 0, has been
used to construct a ‘conditionally exactly solvable (CES) potential’V+(x) for the Hydrogen
atom problem† [22]. In such a papera is a coupling constant whileγ is a parameter taking
some strange values asγ = 2.8 (see figure 7 in [22]). Although there is a close relationship
between that potentialV+(x) and our first-order intertwined potentialV (k)l−1(r), it is important
to be aware of some cautions as follows.

(i) If γ > 0 is not an integer, the SUSY potentialω(x) of [22] is not related to the
physically relevant SUSY potentialW(r) for the hydrogen atom, and in this caseV+(x)
is the ‘CES potential’ for somemathematical problem. If the so-called CES potentials
derived in [22] are to be related with a ‘physical potential’, the conditionγ > 0 is not
sufficient.

† For the sake of clarity in the further discussions we have not used the original notation forω(x) as it has been
given in [22], where it isW(x).
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Figure 1. Some members of theone-parametric family of potentials (48) forl = 2 and the
indicated values ofλ(−1)

2 . The broken curve represents the hydrogen-like potentialVl−1(r).

Notice the arising of global minimum forV (−1)
1 (r), which produces a well which can be modified

by changing the values of the parameterλ
(−1)
2 .

(ii) If γ is an integer greater than zero, the SUSY potentialω(x) can be related to
the Hydrogen atom problem. In this case the function (5.14) of [22] has a term
1F1(−γ − a/ρ,−2γ, 2ρx), which is meaningless at 2ρx = 0 unlessγ + a/ρ is an
integer greater than or equal to zero [20]. Indeed, sinceγ is a positive integer, the
fraction a/ρ is an integer such thatγ > −a/ρ. Hence, the conditiona > 0 is neither
sufficient to ensure the generality of the potentialV+(x).

Taking this into account, a general ‘CES potential’V+(x) really related to the Hydrogen
atom problem would take for instance−a/ρ = γ +k, wherek is an integer such thatk 6 0.
In particular, forγ = l, andx = r/a, the CES potentialV+(x) derived in [22] would be
equal to our first-order intertwined potentialV (k)l−1(r), provided thatνlk = β/α, whereα and
β are constants.

We are going to derive next sometwo-parametric families by means of the technique
discussed in sections 2.2 and 2.3 for the particular case we are dealing with.

3.3. The new two-parametric families

In section 2.2 we have seen that the second-order intertwining relationshipH
(km)

l−2 B
(km)

l−2 =
B
(km)

l−2 Hl provides new solvable potentials if we are able to find some solutionsη(x) to
equation (11). Then we also have shown that the general form of that solutions is given by:

η(r) = (ε(k)l − ε(m)l )

{
d

dr
ln

(
u
(k)
l (r)

u
(m)
l (r)

)}−1

ε
(k)
l 6= ε(m)l . (51)
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For our particular system we take the functionsu(k)l (r) as given by (37). The behaviour of
our η(r) at the ends of [0,∞) is given by

η(r)r→∞ ∼ − 2l + k +m
(l + k)(l +m) η(r)r→0 ∼ − (1− 2l)

r
.

Hence, it is natural to write the new potentialV (km)l−2 (r) as (see equation (11)):

V
(km)

l−2 (r) = Vl−2(r)+ 2α′(r) (52)

where α(r) ≡ η(r) + (1 − 2l)/r is an appropriate function making evident the limit
V
(km)

l−2 (r) → Vl−2(r) when r → +∞, or r → 0. The two-parametric domain ofλ(k)l
andλ(m)l , for which α′(r) is free of singularities, is determined by the parities ofk andm.
In order to make transparent the choice of that domain we take the following convention:
n is the index labelling the factorization energyε(n)l defined byε(n)l ≡ max(ε(k)l , ε

(m)
l ), and

s is such thatε(s)l ≡ min(ε(k)l , ε
(m)
l ). Hence, we have:{

λ
(n)
l ∈ (−∞, 1) λ(s)l ∈ (−∞, 1) |n| even,|s| odd

λ
(n)
l ∈ (1,∞) λ(s)l ∈ (1,∞) |n| odd, |s| even

(53){
λ
(n)
l ∈ (−∞, 1) λ(s)l ∈ (1,∞) |n| even,|s| even

λ
(n)
l ∈ (1,∞) λ(s)l ∈ (−∞, 1) |n| odd, |s| odd.

(54)

The eigenfunctions ofH(km)

l−2 are given by

9
(km)

n,l−2(r) =
B
(km)

l−2 ψnl(r)√
(En − ε(m)l )(En − ε(k)l )

(55)

and

9
(km)

εk,l−2(r) = Clk
√
ε
(k)
l − ε(m)l

u
(m)
l (r)

W(k,m)
9
(km)

l−2,εm
(r) = Clm

√
ε
(m)
l − ε(k)l

u
(k)
l (r)

W(m, k)
(56)

whereClk is given by (44). The corresponding eigenvalues are

E
(km)

l−2,K =
{
− 1

(l +m)2 ,−
1

(l + k)2
}
∪
{
− 1

(l +K)2
}

K > 0. (57)

Let us remark that the only restriction for the factorization energies,ε
(k)
l 6= ε

(m)
l ,

leads to the fact thatη(r) and V (km)l−2 (r) are symmetric under the changek → m and

vice versa,V (km)l−2 (r) = V
(mk)

l−2 (r). However, this symmetry is broken for the intermediate

one-parametric potentials arising whenV (km)l−2 (r) is obtained after two iterated first-order

intertwining procedures. In order to see that, let us suppose thatε
(k)
l > ε

(m)
l . We have two

different ways to get the potentials (52): we can add first the levelε
(k)
l , and then the level

ε
(m)
l ; the other option is to perform the two operations in the opposite order.

(I) In the first case, after the first step we shall get the HamiltonianH
(k)

l−1, with a

spectrum equal to the spectrum ofHl plus a new level atε(k)l 6 El,K=1, where
El,K=1 = −1/(l+ 1)2 is the ground state energy level ofHl . After the second step, the
final HamiltonianH(km)

l−2 has the same spectrum asH(k)

l−1 plus a new level atε(m)l < ε
(k)
l .

In both of these procedures the factorization energy (the ground state energy of the new
Hamiltonian) is less than the ground state energy of the initial Hamiltonian, just as it
happens in the SUSY approach.
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(II) Taking now the two operations in the opposite order, the first intertwined Hamiltonian
H
(m)

l−1 has a spectrum equal to the one ofHl plus a new level atε(m)l 6 El,K=1,
in agreement once again with the SUSY approach. However, the next intertwined
HamiltonianH(mk)

l−2 is derived by adding a new level atε(k)l > ε
(m)
l , i.e., above the

ground state energy level ofH(m)

l−1, which is against the SUSYdoctrine but it is valid
in our treatment.

A final point is that the equality of the two HamiltoniansH(km)

l−2 andH(mk)

l−2 , found by
two iterations of the first-order transformations, leads to two different factorizations of the
global second-order intertwining operator

B
(km)

l−2 = a(km)l−1 a
(k)
l = a(mk)l−1 a

(m)
l = B(mk)l−2 .

3.4. Particular two-parametric families

The simplesttwo-parametric family of potentials (52) corresponds tok = −1 andm = 0.
In this case, by means of (51) we get the solution to (14):

η(r) = 1− 2l

l2(l − 1)2

{
d

dr
ln

(
er/ l(l−1)8

(−1)
l (r)

8
(0)
l (r)

)}−1

l > 1 (58)

which has been recently reported in [14], where8(0)
l (r), and8(−1)

l (r) are given by (47) and
(49), respectively. The appropriatetwo-parametric domain (see (53) and (54)) is given by
λ
(−1)
l , λ

(0)
l ∈ (−∞, 1). From (57) and (34) it is clear thatV (−1,0)

l−2 (r) is strictly isospectral to

Vl−2(r). Notice thatλ(−1)
l = λ(0)l = 0 leads toV (−1,0)

l−2 (r) = Vl−2(r). Moreover, forλ(0)l = 0

andλ(−1)
l = [(l−1)/2]2l−1(2l−2)!/γl−1, the potentials (52) become the family (46) derived

by Ferńandez, providedl is changed byl + 1. We now make concrete the discussion of
cases (I) and (II) of section 3.3.

(I) Departing from the HamiltonianHl , by means of a first-order intertwining operator we
get the HamiltonianH(0)

l−1, whose potential is given by (46), where we have added the

new levelε(0)l = −1/l2 below the ground state energy level ofHl , El,K=1 = −1/(l+1)2.
The iteration of this procedure leads toH(0,−1)

l−2 , whose potential is given by (52) and

(58). In this second step we have added the new levelε
(−1)
l = −1/(l − 1)2 below the

previous ground state energy levelε(0)l = −1/l2, which agrees with the usual SUSY
asumption.

(II) We depart now fromHl to getH(−1)
l−1 , whose potential is given by (48). In this step, we

have added the new levelε(−1)
l = −1/(l − 1)2 below the ground state energy level of

Hl but we have left ahole to be filled during the second step (see section 3.2.2). The
next step provides nowH(−1,0)

l−2 , whose potential is given again by (52) and (58). Notice

that β(−1,0)
l−1 (r) = β(0,−1)

l−1 (r) + β(0)l (r) − β(−1)
l (r). The new energy levelε(0)l = −1/l2

is now addedabovethe ground state energy levelε(−1)
l = −1/(l − 1)2 of H(−1)

l−1 but
below the ground state energy level−1/(l+1)2 of Hl . This last procedure fills thehole
generated during the first step of the whole procedure which is not typical in the usual
SUSY asumption.

A different choice ofk andm produces families whose spectra are almost equal to
the corresponding hydrogen-like spectra, with the two first energy levels different from the
levels of the corresponding hydrogen-like potential. For instance, ifk = −3, m = 0, and
l = 4, the potentialV (−3,0)

2 (r) has a spectrum of the form−1/n2 but without the levels at
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Figure 2. Diagram showing the first energy levels ofH2 andH(−3,0)
2 . Notice the gap between

the ground state energy levelε(−3)
4 = −1 and the first excited stateε(0)4 = −1/42 of the

two-parametric family of HamiltoniansH(−3,0)
2 .

n = 2 andn = 3, similarly as it happens in the first-order case mentioned in section 3.2.3.
This is illustrated in figure 2. A more exotic case is obtained ifk = −4, m = −1, and
l = 5, where the levels withn = 2, n = 3, andn = 5 are not present for the potential
V
(−4,−1)

3 (r).

4. Concluding remarks

The nth-order intertwining technique developed in this paper is intended to deriven-
parametric families of potentials which can be isospectral, or almost isospectral to some
well known potential. In particular, we have successfully derived new potentials from the
hydrogen-like atom for the one parametric and two parametric cases. We have shown also
that the derivation ofmulti-parametric families of almost isospectral potentials becomes
mathematically easy by the iteration of the first-order intertwining technique. Although
the only trouble in our approach could be to find the solutions to a set ofn Riccati
type equations, characterized byn different factorization energies, we have shown that
the eigenvalues problem for the initial potential allows one to get that solutions by means
of unphysicaleigenfunctions. Ourone-parametric results for the hydrogen-like atom show
how the technique effectively works, moreover, our resulting families of potentials are
more general than other results previously derived [1, 2, 4, 9]. On the other hand, ourtwo-
parametric potentials represent a further generalization of theone-parametric cases presented
in this paper. Finally, we have shown that the construction of a SUSY partner Hamiltonian
using a factorization energyε less than the ground-state energy of the departure Hamiltonian
is not a general rule in SUSY QM. In particular, the generation ofholes in the spectra of the
n-parametric families of almost isospectral hydrogen-like potentials becomes the key-stone
in the construction of theatypical n-SUSY partners of the Hydrogen potential derived in
this paper. These techniques can be applied to other physically interesting situations, e.g.,
for systems with continuous spectra as the free particle. A detailed study in this direction
will be given elsewhere [23].
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Ferńandez D J, Glasser M L and Nieto L M 1998 Phys. Lett.A 240 15

[13] Rosas-Ortiz J O 1997PhD ThesisCINVESTAV-IPN, México
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